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Abstract. Using hidden Markov models (HMMs) and traditional behavior anal-
ysis, we have examined the effect of metacognitive prompting on students’
learning in the context of our computer-based learning-by-teaching environ-
ment. This paper discusses our analysis techniques, and presents evidence that
HMMs can be used to effectively determine students’ pattern of activities. The
results indicate clear differences between different interventions, and links be-
tween students learning performance and their interactions with the system.
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1 Introduction

We have developed exploratory learning environments called teachable agents that
use a learning-by-teaching paradigm to promote learning and reasoning skills with
middle school science students [1][2]. The students are typically not domain experts
and have little knowledge of teaching practices. In these environments, students teach
a computer agent called Betty using structured graphical representations called con-
cept maps [3]. Since the concept maps are purported to be representations of Betty’s
knowledge, the students are teaching Betty and fixing her errors by revising the maps.
Of course, the maps are generated by the students based on their own knowledge, thus
they are actually representations of the students” own domain understanding (Fig. 1).

The teaching aspects of this environment build upon research showing that students
can benefit academically by teaching other students [1][4]. Biswas, Schwartz, &
Bransford have reported that students preparing to teach felt that the responsibility to
teach encouraged them to gain deeper understanding of the materials [5]. Beyond pre-
paring to teach, actual teaching taps into three critical aspects of learning interactions
— structuring, taking responsibility, and reflecting. These interactions facilitate self-
monitoring and reflective knowledge-building for the teacher [6]. Effective teaching
requires the monitoring of how well students understand and use ideas. Tutors and
teachers often reflect on their interactions with students during and after the teaching
process in order to better prepare for future sessions [8][9].
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Fig. 1: Betty’s Brain system with Query Window

The visual concept map structure also helps students make concepts and relation-
ships explicit, which supports self-monitoring and knowledge organization [3]. The
concept mapping also occurs in a context where the students can query Betty, ask her
to explain her reasoning, and assess her knowledge by having her to take quizzes. For
these reasons, we have hypothesized that working with Betty can help students to bet-
ter understand science concepts, and engage in productive learning strategies that
promote metacognition, organization, and reasoning with causal knowledge

Our previous work has focused on students’ learning as measured by the quality of
their concept maps. We found that learning-by-teaching with metacognitive support
helped students learn about river ecosystems, and also better prepared them for future
learning on related topics [1][11]. We compared several versions of the learning by
teaching environment with a non-teaching version. Students who taught Betty devel-
oped more complete and interconnected concept maps than students who created
maps for themselves (i.e., these students made concept maps and received feedback
from the system on the quality of the map, but there was no cover story of teaching an
agent). Learning outcomes were strongest for students who also received metacogni-
tive feedback from Betty, in which she exhibited self-regulated learning behaviors
that the student teacher could appropriate to improve their own learning. These differ-
ences persisted during a transfer phase in which students learned about a new domain
and taught Betty in the absence of most feedback and prompts.

We have recently turned our attention to analyses of students’ behaviors as they
teach Betty and create concept maps. Such analyses are important because they shed
light on students’ choices of interactive behaviors that influence learning, and the
strategies they bring to the learning task [4]. Preliminary analyses of prior data
showed that the quality of students’ concept maps was paralleled by patterns in their
behaviors [2]. These results suggest that self-regulated learning prompts and feed-
back from Betty helped student teachers engage in productive learning interactions.

In this paper, we discuss data from a new study testing the benefits of the Betty’s
Brain system. In particular, we present a refined methodology for exploring students’
strategies using hidden Markov models (HMMs) to capture students’ behaviors as



they use the system [13]. Ours is a specific implementation of the generic process out-
lined by Fisher and Sanderson [14]. We discuss our methods for extracting the student
interaction patterns from system log files, and describe our procedure for deriving and
interpreting the HMMs of student behaviors. We then compare the HMMs across
three experimental conditions in the main and transfer phases. We believe that this
approach has merit for analyzing student behaviors for several reasons. First, HMMs
allow us to go beyond frequency counts or proportions of individual behaviors, in-
stead examining how these behaviors cohere in larger patterns or strategies. Similarly,
this approach takes into account the entire sample of students’ behaviors, rather than
focusing only on specific behaviors or moments in time. The holistic nature of our
analysis may provide a useful global view of how students approach the learning task.

2 Experimental Design and System Features

Our participants were 56 students in two 5™ grade science classrooms, taught by
the same teacher. Students were assigned to one of three conditions using stratified
random assignment based on standardized test scores. The conditions varied on the
type of scaffolding provided by the mentor agent and/or the Betty agent. The students
first created concept maps on river ecosystems during the main phase (seven 45-
minute sessions). After an eight-week delay, students participated in the transfer
phase (five 45-minute sessions) in which they learned about a new domain, the land-
based nitrogen cycle. All students used an identical system during the transfer phase.

The three versions of the system were: (i) a learning by teaching (LBT) version in
which students taught Betty, (ii) a self-regulated learning by teaching (SRL) version
in which students taught Betty and received metacognitive prompts from Betty, and
(iii) an intelligent coaching system (ICS) version in which students created a map for
themselves with guidance from the mentor agent.

Students’ interactions with Betty include three main activities: “teaching” by gene-
rating the concept map; “querying” by using a template to ask Betty questions; and
“quizzing” Betty by asking set of predefined questions that have been “assigned” by
the mentor agent. Betty answers questions using qualitative reasoning methods [1] to
follow chains of links to determine how changes in one concept affect other concepts.
After asking Betty a question, students can ask Betty to explain her reasoning steps.

The ICS version was our control condition. Students constructed a concept map to
answer three sets of quiz questions. These students had access to the same teach,
query, and quiz functions, but they were not presented in terms of teaching Betty.
Students directly edited and queried their own maps. When students submitted their
maps for the quizzes, Mr. Davis, the mentor agent, provided corrective feedback in
the form of hints on how to correct errors [1]. The LBT group received the same cor-
rective feedback from Mr. Davis after Betty took a quiz. The feedback to the SRL
students focused on higher level concepts (e.g., read about the food chain or the waste
cycle) and suggestions on how they could become better learners and teachers.

For the transfer phase, all students used a stripped down version of the LBT system
with no feedback provided by Betty or the mentor. Students could still check their
maps by asking questions or submitting them for a quiz.



2.1 Metacognitive Support in Betty’s Brain

An important part of our system is the self-regulated learning support provided to
the students. Self-regulated learning theory describes a set of comprehensive skills
such as setting learning goals, selecting appropriate strategies, monitoring one’s
learning progress, and revising one’s knowledge and strategies as necessary [14][18].

Table 1. Some Interactive Action Patterns and Betty’s responses

Pattern
Description

Regulation Goal Betty Response

I’m still unsure of this material and 1
would like to do well. Mr. Davis said
“take the quiz only if you think you will
do well.”

(Betty refuses to take quiz)

Successive quiz re-
MONITORING BY quests but no queries
ASKING QUERIES asked of Betty in be-
tween quizzes

Let’s see, you have asked me a lot of
questions, but you have not asked for my
explanations lately. Please make me ex-
plain my answers so you will know if |
really understand.

Multiple requests for
Betty to give an an-
swer but no request
for explanation

MONITORING
THROUGH
EXPLANATIONS

I would really like to do better. Please
check the resources, teach me, and make

The most recent quiz sure | understand by asking me questions

;gé‘gggg \S,\fg:selihs;%nt';fa?g}/ that are on the quiz. My explanation will
- P help you find out why | am making mis-
vious score

takes in my answers. Also, be sure to
check out the new tips from Mr. Davis.

Betty’s SRL persona incorporates aspects of this metacognitive knowledge that she
conveys to the students to help them develop and apply monitoring and self regulation
strategies [2]. For example, when the student is building the concept map, Betty
occasionally responds by demonstrating reasoning through chains of events. She may
remark (right or wrong) that the answer she is deriving does not seem to make sense.
The idea of these spontaneous prompts is to get students to reflect on what they are
teaching and perhaps check on their tutee’s learning progress. These interactions are
directed to help Betty’s student-teacher understand the importance of monitoring and
being aware of one’s own abilities.

We have identified several recurrent sequences where metacognitive feedback
might be useful. When the system detects such patterns, Betty provides suggestions
the students may employ to improve their own understanding. Some of the triggering
patterns along with Betty’s response are shown in Table 1. After Betty takes a quiz,
the mentor agent also reminds Betty and her teacher about the importance of reading
resources, and checking one’s understanding after learning (teaching) new material.



3 Learning Results

In the main phase, the SRL condition generated maps with significantly more cor-
rect concepts and links than the LBT, p < .05, and ICS students, p < .05 [2]. These re-
sults suggest that the metacognitive prompting improved the students’ learning. How-
ever, the LBT students also generated more correct maps than the ICS students, which
suggests an overall benefit for learning by teaching.

Table 2. Concept map quality: main and transfer studies

Condition Mean (SD) Map Scores
Main Phase Transfer Phase
ICS 22.83(5.3) 22.65 (13.7)
LBT 25.65 (6.5)° 31.81 (12.0)
SRL 31.58 (6.6)*" 32.56 (9.9)

2SRL > ICS, p < .05; ® SRL > LBT, p < .05; °LBT > ICS, p < .05.

Students’ transfer map scores provide indications whether a given version of the
system better prepared students to learn in a new domain without scaffolds and
prompts. Students in the SRL condition still had the highest map scores after the
transfer phase, and scored significantly higher than the ICS students, p < .05. Interes-
tingly, the LBT students’ scores were now comparable to the SRL students. However,
LBT students did not differ significantly from the ICS group, in part because of the
high level of variability within that group.

Our interpretation is that working with Betty, especially with metacognitive
prompts, helped students develop metacognitive strategies that supported their abili-
ties to learn subsequently. However, another possible explanation is that ICS students
were at a disadvantage because they switched from a non-teaching environment to a
teaching environment in the transfer phase of the study, whereas the other students
had not. By directly analyzing patterns of how students interact with the system, we
explore the validity of these explanations.

4 Analysis of Behavior Patterns

We recorded log files of students’ interactions with the system. From these log
files, we identified the six main activities summarized in Table 3.

Sequences of these activities were then extracted from the log files, and mined us-
ing statistical learning methods to search for patterns that defined students’ interac-
tions with system. Our goal was to determine if there was evidence of different ac-
tivity patterns between groups during the main phase, and whether these patterns per-
sisted or changed when students worked in a new environment during the transfer
phase. We thus derived two sets of HMMs, one set from students’ accumulated activi-
ty sequences from all main phase sessions, and the second set from the transfer phase
sessions [13].



Table 3. Student Activities and Related Actions

Activity Student Actions
Edit Map (EM) adding, modifying, or deleting concepts and links
Ask QUERY (AQ) asking Betty queries
REQUEST QuIz (RQ) asking Betty to take the quiz
RESOURCE AcCCESS (RA) accessing the resources
REQUEST EXPLANATION (RE) asking Betty for an explanation to her query answer
CONTINUE EXPLANATION (CE) | asking Betty to provide a more detailed explanation

HMMs are so named because their states are hidden. That is, they are not directly
observed in the input sequences, but provide an aggregated description of the stu-
dents’ interactions with the system. Sequences of states may be interpreted as the stu-
dents’ learning behavior patterns. The set of parameters that define a HMM comprise
(1) the transition probabilities between the states, (ii) observation probabilities for de-
tecting a particular observation in a state, and (iii) initial probabilities for each state
[13]. The particular learning method used, developed by Li and Biswas [19] utilizes
the Bayesian information criterion (BIC) to find the optimal number of states that de-
fine the HMM.

The HMM models derived for the three conditions in the two phases of our study
are summarized in Figure 3. For convenience, each hidden state is labeled by the pre-
dominant activity (or activities) comprising that state. (Only those activities whose li-
kelihood of occurrence exceed 10% are listed). Some states are dominated by a single
activity (e.g., editing the map), whereas others represent a composite of more than one
activity (e.g., requesting quizzes and accessing the resources). Figure 3 also provides
the likelihood, expressed as a percentage, of a student in a given state transitioning to
a different state or remaining in the current state.

4.1 Interpreting the HMMs

Much like factor analysis, it is up to the researcher to give meaning to the derived
interactive states, and hypothesize strategies for learning that may be associated with
these states. Our analyses suggest several interpretable patterns that are relevant to in-
teractive metacognition. These patterns combine several activity states and transitions
to define higher level behavior patterns with links to metacognitive strategies.

One pattern is basic map building. This activity pattern is characterized by editing
the map (EM), submitting the map for a quiz (RQ), and occasionally accessing the
reading resources (RA). The pattern reflects a basic and important metacognitive
strategy. Students work on their maps, check the map by taking a quiz to see if there
are flaws, and occasionally refer to the readings.

A second pattern is map probing. Students edit the map (EM) and then ask a ques-
tion (AQ) to check for specific relations between two concepts (e.g., if fish increase,
what happens to algae?). This pattern exhibits a more proactive, conceptually driven
strategy, because students are targeting specific relations rather than relying on the
quiz to identify errors. Students also need to formulate their own questions to do so.



The third pattern is map tracing. This pattern reflects students asking Betty or the
mentor (depending on the system) to explain the reasoning step by step (RE and CE).
When Betty or the mentor initially answers a question, they state that a change in one
entity causes a change in another entity and highlight the paths they followed to reach
their answer. To follow the details of the inference chain, students had to ask Betty or
Mr. Davis to explain their reasoning. The agents did so by hierarchically decomposing
the chain of inference; for each explanation request, they showed how a particular
path within the larger chain contributed to the final answer. Receiving more details
about the reasoning process is particularly useful when maps become complex, and
there are multiple paths between two concepts.
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The individual states portrayed in the original HMMs (Fig. 3) can be combined and
re-represented in order to reflect these higher level aggregate states. These aggregate
states are shown in Fig. 4, which are separated by condition and phase of the study.
The percentages accompanying each arrow indicate the likelihood of transitioning
from one aggregate to another or remaining in a given aggregate state. In addition, we
exploited the stationary nature of these models to calculate the steady state probabili-
ties of each aggregate state as the sum of the stationary probability of the individual
states that make up the aggregate state (Table 4). These values indicate the probability
that a student would be in a given state. For example, during the main phase, ICS stu-
dents had a 62% chance of engaging in map building, but only a 7% chance of engag-
ing in map tracing. The individual states’ steady-state probabilities were also taken in-
to account when calculating the transition probabilities between aggregate states.

MAIN

84%,
‘ Basic
Map Building

93%,

‘ Basic
Map Building

Map
Tracing
LBT

TRANSFER

SRL

Basic
Map Building

92%, 4% 5%
‘ Map
Probing
Map
Tracing
ICS

Figure. 4. Behavior Patterns for the three groups in the main and transfer study

LBT SRL

Table 4. Aggregate state stationary probablities (i.e., probability of being in a given state).

State ICS LBT SRL Tr?gssfer TrigsTfer Trgﬁster
Map Building 0.62 0.54 X 0.60 0.66 X
Map Probing 0.31 0.38 X 0.36 0.34 X
Map Tracing 0.07 0.08 0.15 0.04 X 0.11
Building & Probing X X 0.85 X X 0.89

4.1.1 Main Phase Patterns. One way to approach each figure is to assume that stu-
dents begin with basic map building. As an example, the ICS models show that there
is a greater than 90% chance that the students remain in the map building condition,



and less than a 10% chance that they transition to the map probing state. The LBT be-
havior model is very similar to the ICS model, except that these students in this group
were more likely to transition to the map probing state from the map building state
(15%). Both the ICS and LBT groups rarely use Map Tracing as a learning behavior.

The SRL behavior model is different in that the map building and map probing
states are tightly coupled, and thus aggregated into one state. This is not surprising
because Betty’s prompts required the students to ask queries and check her answers
between quizzes. The aggregated model indicates that the SRL students were more
likely to engage in map tracing behaviors (15% as opposed to 8% for the LBT group
and 7% for the ICS group) perhaps to understand how she reasoned with the concept
map to derive her answers. Overall, the SRL condition exhibited a more versatile re-
pertoire of interactive strategies for completing the cognitive task of teaching Betty.
This offers one explanation for why the SRL students generated higher quality maps
in the main phase, even though they were never explicitly told how to correct their
maps. The support for interactive metacognition, primarily in terms of seeking infor-
mation from the resources, and monitoring Betty’s learning helped them learn the
content better than the other two conditions.

4.1.2 Transfer Phase Patterns. In the transfer phase, all students taught Betty but all
scaffolds were removed. The only feedback students received was how well Betty
performed on the quizzes. The question was whether there was any continuation of
the patterns developed during the main phase. The ICS condition continued to focus
on the basic map building pattern (60%). Their map probing behavior occurrence
increased marginally (31% to 36%), and their use of the tracing mechanisms was
limited (4%), even though they were now teaching Betty just like the other two
groups. We inferred that the teaching aspect alone did not override the students’
desire to simply get quiz answers right. The ICS students did not seem inclined to
probe Betty’s understanding, and by extension their own understanding.

The transfer phase behavior patterns exhibited by the SRL group were also similar
to their main phase behaviors. The map building and map probing states were still ag-
gregated, and occurred with high frequency (89%). The transitions from the build-
ing/probing state to map tracing decreased (9% to 6%). It is possible that the SRL stu-
dents had internalized the reasoning mechanism and did not need to probe Betty as of-
ten or ask her to explain. However, once these students transitioned to the map tracing
state, there were more internal transitions in that state (transition likelihood was 22%).
This may indicate that when the concept map and the answer generation process be-
came complex, the students did spend more time in map tracing activities.

The LBT condition behavior model also remained similar with map building and
map probing dominating their learning activities. However, a more careful study of
the more detailed model in Figure 3 reveals that within the map building phase these
students spent almost twice as much time reading the resources as they did in editing
their maps (41% to 25%). The amount of map tracing by this group seemed to de-
crease and all map tracing activity was integrated with the map building and map
probing states. This version of Betty used in the transfer phase was most similar to the
original LBT condition, except there was no corrective feedback provided by Mr. Da-
vis. Therefore, it is reasonable to expect that the LBT condition would show the same
interactive patterns across study phases. Instead, the LBT students seemed to develop



a different learning strategy that included more time spent in reading the resources to
learn about the new domain during the map building phase.

Unlike the SRL group the LBT group did not receive feedback on monitoring strat-
egies in the main phase of the study. As a result, the LBT group did not seem to use
map tracing as a learning strategy. Instead, their strategy was to track down Betty’s
wrong answers by querying her and then reading the resources to find how to change
their map to get the correct answer (given that they were no longer given corrective
feedback). Teaching in the main phase of the study seemed to have a positive effect
on the LBT groups learning behaviors because they performed better than the ICS
group in the transfer phase where both groups worked with the same system. The dif-
ferences in the feedback received during the main phase of the study also produced
differences in learning behaviors between the LBT and SRL groups. Whereas the
LBT group combined map probing and reading of resources to learn the new domain,
the SRL group also used map tracing when faced with complex reasoning situations
with their concept maps.

5 Discussion and Conclusions

The Betty’s Brain system is designed to leverage the benefits of learning by teach-
ing and concept mapping to facilitate students’ science learning and causal reasoning.
Our hypothesis that working with Betty helped students engage in educationally pro-
ductive cognitive and metacognitive processes is supported by the results reported
here. Students who utilized the LBT and SRL systems constructed better concept
maps with more causal relationships between entities than students who used the non-
teaching ICS version of the system. Moreover, students’ performance was strongest
when we explicitly supported their use of self-regulated learning strategies by having
Betty model and prompt for such behaviors. Not only did these students do well in the
main phase of our study when the prompts were present, they also continued to out-
perform other groups in the transfer phase when the prompts were absent.

Although assessments of learning outcomes were in agreement with our hypothes-
es, it was also critical to explore students’ actual behaviors during the teaching and
learning process. Using HMM s to characterize students’ behaviors allowed us to iden-
tify several meaningful patterns that distinguished our three experimental conditions
in the main and transfer phases.

Examining the map building, map probing, and map tracing patterns across the
three conditions provided interesting results. First, these results support the claim that
our SRL system with metacognitive prompting was beneficial because it altered stu-
dents’ behaviors in positive ways. Whereas LBT and ICS students relied heavily on
basic map building, we were successful in encouraging SRL students to engage in
more probing and tracing. In addition, these beneficial patterns tended to persist in the
transfer phase of the study. An interesting result is the learning strategy that the LBT
students developed as they progressed from the main to the transfer phase. Although
these students used more map building during the main study, they spontaneously
showed a shift toward probing and resource reading to correct errors, but they did not
develop the tracing behavior during the transfer phase. Because the LBT students



used fairly similar systems in both the main and transfer phases, these results suggest
that use of a learning-by-teaching system over a period of time may help students
gradually develop better learning strategies. But there is also added value to focusing
on metacognitive and self-regulated learning strategies through social interactions be-
tween tutors, their students, and agents who play the role of mentors. More research
is needed to look at the benefits of extended use of our system.
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